






Video Compression by Neural Networks 

Daniele Vigliano; Raffaele Parisi;  Aurelio Uncini 

INFOCOM Department, University of Rome “La Sapienza” – Rome, Italy 

Abstract. In this chapter a general overview of most common approaches to video 
compression is first provided. Standardization issues are briefly discussed and 
most recent neural compression techniques reviewed. In addition, a particularly ef-
fective novel neural paradigm is introduced and described. The new approach is 
based on a proper quad-tree segmentation of video frames and is capable to yield a 
considerable improvement with respect to existing standards in high quality video 
compression. Experimental tests are described to demonstrate the efficacy of the 
proposed solution. 
Keywords: neural networks, cellular networks, fuzzy systems, MPEG standards, 
recurrent neural networks.    

1  Introduction 

“A picture is worth a thousand words”. This popular saying well synthesizes 
the different weight between visual and textual or linguistic information in every-
day’s life. As a matter of fact, visual information has reached a primary and un-
disputed role in modern Information and Communication Technology. In particu-
lar, the widespread diffusion of telecommunications and networking offers today 
new opportunities to the transmission and processing of multimedia data. Never-
theless, the transmission of highly informative video contents imposes strict re-
quirements in terms of bandwidth occupancy. A trade-off between quality and 
compression is thus searched for.   

Compression of video data aims at minimizing the number of bits required to 
represent each frame image in a video stream. Video compression has a huge 
number of applications in several fields, from telecommunications, to remote sens-
ing, to medicine. Depending on the application, some distortion can be accepted in 
exchange for a higher compression ratio. This is the case of so-called lossy com-
pression schemes. In other cases (e.g. biomedical applications), distortion is not 
allowed (lossless coding schemes).  

Video compression techniques have been classified into four main classes: 
waveform, object-based, model-based and fractal coding techniques [45].  

Waveform compression techniques use time as a third dimension. Into this class 
one can find all the applications working in the time domain (e.g. Discrete cosine 
transform, Wavelets and also Motion compensation techniques [58][53]). Object-
based techniques consider video sequences as collections of different  objects 



 

[62], that can be differently processed. Objects are typically extracted by a seg-
mentation step [44]. Model-based approaches perform the analysis of the video 
input and the synthesis of a structural 3D or 2D model  [66]. Fractal-based tech-
niques extend to video applications the approaches successfully applied to image 
coding. In this framework images are expressed as the attractor of a contractive 
function system and then retrieved by iterating the set of functions [73]. Corre-
spondingly, several standards have been also developed.  

In recent years there has been a tremendous growth of interest in the use of neu-
ral networks (NNs) for video coding. This interest is justified by the well-known 
capabilities of NNs of performing complex input-output nonlinear mappings, in a 
learning from examples fashion. As a matter of fact, appropriate use of NNs can 
considerably improve the performance of all the four compression techniques 
above described.  

This chapter is organized as follows. Section “Review of recent standards” provides 
a short description of most recent standards in video compression. Section “Neural 
video compression: existing approaches” presents an overview of most popular neural 
approaches to video coding, while section “Quad-tree segmentation and neural com-
pression” describes two innovative and particularly effective solutions. 

2  Review of recent standards 

Compression of image and video data has been the object of intensive research in 
the last twenty years. The diffusion of a large number of compression algorithms has 
led to the definition of several standards. In particular, two international organizations 
(ISO/IEC and ITU-T) have been involved in the standardization of images, audio and 
video data. A complete overview of recent standards and trends in visual information 
compression is out of the scope of this work and can be found in [45][51][52]. A brief 
summary is provided here for convenience of description. 

The standards proposed for general purpose compression of still images are 
JPEG [46][47], based on a block discrete cosine transform (DCT) followed by 
Huffman or Arithmetic coding, and the more recent JPEG2000 [48]-[50], based on 
discrete wavelet transform and EBCOT coding. 

Concerning video compression, ITU H.261 suggests the use of hybrid schemes in 
order to reduce spatial redundancy by DCT and temporal correlation by motion com-
pensated prediction coding [53]. This approach was designed and optimized for video-
conference transmission over an ISDN channel, for a bit rate down to 64 kbit/sec. 

H.263 [56] and H.263+ [54] have the same core architecture of H.261 but in-
troduced improvements principally in the precision of motion compensation and in 
prediction. These standards allow for the transmission of audio video information 
at a very low bit rate (9.6 kbit/sec).  

Most recent advances in video coding aim at developing new improved stan-
dards by exploiting all the suitable features previously used in video compression. 
An example is H.26L [77][55]. 



 

The first studies of the Moving Picture Expert Group (MPEG) started in 1988. 
They aim at developing  new standards for Audio-Video Coding. The main differ-
ence with respect to the other standards is that MPEGs are “open standards”, in 
the sense that they are not oriented to a particular application.  

MPEG-1 was developed to operate at bit rates of up to about 1.5Mbit/sec for 
the consumer video coding and video content storing on media like CD ROM, 
DAT. It provides important features including frame-based random access of video, 
fast forward/fast reverse (FF/FR) searches through compressed bit streams, reverse 
playback of video and editability of the compressed bit stream. MPEG-1 performs the 
compression by using several algorithms, such as the subsampling of video informa-
tion to match the human visual system (HVS), variable length coding, motion com-
pensation and DCT to reduce the temporal and spatial redundancy [57]-[59].  

MPEG-2 is similar to MPEG-1 but it includes some extensions to cover a wider 
range of applications (e.g. HDTV and multi-channel audio coding). It was de-
signed to operate at a bit rate between 1.5 and 35 Mb/sec. One of the main en-
hancements of MPEG-2 with respect to MPEG-1 is the introduction of syntactical 
rules for efficient coding of interlaced video. The Advanced Audio Coding (AAC) 
is one of the formats defined in the non back-compatible version of MPEG-2. It 
was developed to specifically perform multichannel audio coding. MPEG-2 AAC 
is based on the MPEG-2 layer III, where some aspects were improved (frequency 
resolution, joint stereo coding, Huffman coding) and some others (like spectral 
and time prediction) were introduced. The resulting standard is able to perform the 
coding of five audio channels [60][61]. 

Object-oriented techniques extensively developed in computer science have 
been successfully applied to video compression, leading to MPEG-4. In this stan-
dard the video signal can be considered as composed by different objects, each 
one with its own shape, motion and texture representation.  Objects are coded in-
dependently, in order to allow for direct access and manipulation.  The power of 
this coding approach is that different objects can be coded by different algorithms,  
with different compression rates. This approach is justified by the fact that in a 
video sequence different parts of the scene may accept different distortion levels. 
The original video is divided into streams: audio and video streams are separated 
and each object has its own stream, e.g. the information about object placement, 
scaling and motion (Binary Format of Scene).  

Furthermore, in MPEG-4 synthetic and natural sounds are coded in a different 
way. In fact the Synthetic Natural Hybrid Coding (SNHC) performs the composi-
tion of natural compressed audio and of synthetic sounds (artificial sounds are cre-
ated in real time by the decoder). In addition,  MPEG-4 proposes also the distinc-
tion between speech and “non speech” sounds, since the former can be 
compressed by specific ad hoc techniques  [62]-[65].  

In modern information and communication technology, a fundamental issue is 
to guarantee that the information content of a message can be easily accessed and 
handled by the user. MPEG-7  (also named “Multimedia Content Description 
Tool”) provides a rich set of tools performing the description of audio-video con-
tents in a multimedia environment. The application areas that benefit from audio-
video content description are multiple, from web search of multimedia contents to 



 

media broadcasting, from services in arts (e.g. in art galleries) to home entertain-
ment, to database (of multimedia data) applications [67]-[70]. Descriptions pro-
vided by MPEG-7 are independent of the compression method and have to be 
meaningful just in the context of the considered application. For this reason differ-
ent types of features perform different abstraction levels. 

More specifically, the MPEG-7 standard consists of several parts. In this sec-
tion Multimedia Description Schemes, the Visual description tool  and the Audio 
description tool are detailed. Multimedia Description Schemes (DSs) are metadata 
structures used to describe audio-visual contents. It is defined by the Description 
Definition Language (DDL), based on XML. Resulting descriptions can be ex-
pressed in a text form (TeM) or in a binary compressed form (BiT). The former 
one allows for human reading and editing, the latter one improves the efficiency in 
storing and transmission. In this framework tools are developed to provide DSs 
with information about the content and the creation of the multimedia document 
and DSs to improve the browsing and the access to the audio-visual content. The 
Visual description tool performs the description of visual categories like colour, 
textures, motion, localization, shape and face recognition.  The Audio description 
tool contains low level tools (e.g. spectral and temporal audio feature descriptions) 
and high-level specialized tools (like musical instrument timbre description, mel-
ody description, speech tools and those for the recognition and indexing of general 
sounds). The MPEG-7 standard provides also an application to represent the mul-
timedia content description named “Terminal”. It is important to underline that the 
Terminal takes care of both the ingoing and the outgoing transmissions, also tak-
ing into account specific queries from the end user. 

MPEG standards aim at processing multimedia contents in a physical and in a 
semantic context (MPEG-7), but they do not address other issues like multimedia 
consumption, diffusion, copyright, access or management rights. MPEG-21 was 
introduced with the explicit goal of overcoming this limitation, by providing new 
solutions to access, consumption, delivery, management and protection processes 
of different types of contents. MPEG-21 is essentially based on two concepts: 
Digital Item and Users. The Digital Item (DI) represents the fundamental unit of 
distribution and transaction (e.g. video collections, music albums); it is modelled 
by Digital Item Declaration (DID), which is a set of abstract terms and concepts.  
A User is every entity (e.g. humans, communities, society) interacting with the 
MPEG-21 environment or making use of Digital Items. Management of Digital 
Items is permitted only to a restricted set of Users [71][72]. 

3  Neural video compression: existing approaches 

The purpose of this section is to provide a summary of most popular neural ap-
proaches to video compression. In recent years, in fact, NNs have been success-
fully applied to video compression, for example in intra-frame coding schemes, 
object clustering, motion estimation and object segmentation. The power of NNs 
as learning systems was also exploited to remove artifacts and in post processing. 



 

An important issue in video compression is computational complexity, since 
more complex algorithms usually require more expensive hardware implementa-
tions. As a matter of fact, the parallel architecture of NNs allows to considerably 
reduce the computational cost with respect to more conventional approaches. This 
is one of the reasons of the success of neural video coding techniques. 

The following sections will focus on some of the most representative neural 
approaches to video compression, namely those based on vector quantization, sin-
gularity maps and human vision, motion compensation and fuzzy segmentation. 

3.1  Vector quantization 

Vector quantization (VQ) is a very popular and efficient method for frame im-
age (or still image) compression and it represents the natural extension of scalar 
quantization to n-dimensional spaces [17]-[19].  

Figure 1 shows a conceptual scheme of a VQ coder. Input vectors are quantized 
to the closest codeword of the codebook, so the coder’s output is the index of the 
selected codeword. Codebooks are generated from a set of training images by us-
ing clustering algorithms. For example in [20] this optimization problem is ap-
proached by a Kohonen neural network having the same number of neurons as the 
number of pixels in a block (self organizing feature maps, SOFM). The number of 
clusters (output neurons) is set to the desired number of codewords. 
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Fig. 1. Scheme of a VQ coder 

Learning is based on evaluation of the minimum distance between outputs and 
inputs. The winner is the neuron having the smallest distance. 

The advantages of using SOFM with respect to other clustering algorithms (k-
means, LBG) include lower sensitivity to initialization, better performance in 
terms of rate distortion and faster convergence. In addition, during learning SOFM 
updates  not only the winning class but also the neighboring one, since neurons 
unlikely to win are less frequently used. 

For more details about general motivations justifying the use of SOFM in 
codebook design see [20]-[22]. Specific properties of SOFM can be used in per-
forming more efficient codebook design, examples are APVQ (Adaptive Predic-
tion VQ), FSVQ (Finite State VQ) and HVQ (Hierarchical VQ). 

APVQ uses ordered codebooks where correlated inputs are quantized in adja-
cent codewords; an improvement in coding gain is obtained by encoding such 
codebook index with a DPCM (or some other neural predictor) [23]. 



 

FSVQ [24][27] introduces some form of memory in static VQ. It defines  states 
by using previously encoded vectors. In each state the encoder selects a subset of 
codewords of the global codebook, the Side Match FSVQ [29], in which the cur-
rent state of the coder is given by the closest side of the upper and left neighbour-
ing vectors (i.e. the block of the frame image). 

In order to reduce the computational cost, hierarchical structures can be also 
employed. In literature several techniques based on the cascade of multiple VQ 
encoders are described. Examples are two layer architectures or hierarchical struc-
tures [27] based on topological information [26]. 

Finally, in the VQ framework other neural approaches use a combination of dif-
ferent algorithms. As an example, [28] proposed neural principal component 
analysis (PCA) to generate the inputs to a SOFM. 

3.2  Singularity maps and human vision 

Emulation of the human vision system (HVS) inspired several solutions to 
video compression, yielding low compression ratios (about 1000:1) [30]-[32]. Due 
to its physiological nature, human eye does not focus on each single pixel of an 
image or a video stream but more on aspects like edges or intensity changes. 

The retina in the human eye has two kinds of receptors: rods and cones. Rods 
are used for monochromatic light and cones for colours (RGB). Each receptor 
fires when it receives light, at the same time inhibiting nearby receptors. This be-
haviour is known as “lateral inhibition” and inspired some artificial neural archi-
tectures. For this reason the eye is able to detect edges better than smooth surfaces. 
Transmission through the optical nerve suffers from dispersion, so edges are 
smoothed and borders are broadened. 

A Singularity Map (SM) [30]-[32] is obtained by labelling, with topological in-
dex and greyscale correspondence, the singular point of the border of the frame 
image. By this way the whole edge can be transmitted as a sequence instead of as 
an image. In practice, an SM collects all the multiresolution edges of a frame im-
age. The extraction process requires a special care since ordinary edge extractors 
(like Sobel) typically broaden edges. 

A typical HVS-based algorithm is composed by two main parallel steps: 

- very low bit rate compression performed with a method that does not pro-
duce artifacts; 

- singularity map (SM) computed from the original video, before the com-
pression. 

The second step corresponds to the application of singularity map on com-
pressed frames. A block scheme of the proposed technique is shown in figure 2. 
Application of SM improves the performance with respect to more conventional 
video compression techniques (upper path in figure 2).  

The algorithm performs two types of singularity maps: hard SM for daylight 
video sequences and soft SM for nightlight video sequences. In addition this ap-
proach takes into account the presence of noise in the original video sequence, be-



 

cause it is able to perform a more difficult estimation of singularity map. 
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Fig. 2. Block scheme of HVS-based compressor 

For hard SM iterative min-max was proposed, while soft SM can be performed by 
Cellular Neural Networks (CNNs), that can extract sharp edges in real time [31]. 

Once SM is computed, very low bit rate video compression is achieved by using 
Embedded Predictive Wavelet Image Coding (EPWIC [33]), Embedded Zerotrees of 
Wavelet coefficients (EZW [34]) or other wavelet-based compression techniques.  

3.3  Motion compensation 

Motion compensation (MC) is one of the most powerful techniques that can be 
used to reduce temporal correlation between adjacent frames. It is based on the as-
sumption that in a large number of applications adjacent frames are usually highly 
correlated. Temporal correlation can be reduced by coding a block in a frame as a 
translated version of a block in a preceding frame. Of course the motion vector has 
to be transmitted too. In the following only translational motion will be considered.  

Frames are typically segmented in macroblocks of 16x16 pixels, made of 4 
blocks of 8x8 pixels (a reduced block representation error is obtained with finer 
segmentation but it produces a computational overhead). Figure 3 shows how in 
coding the block in frame k, the “best match block” of previous frame is computed 
and then the representation error is coded together with the information of the 
“motion vector”. 

Several methods have been investigated in order to reduce the estimation error 
and to speed up the search for the best match. In particular, predictive methods 
perform the matching research only in the direction of previous frames, while 
bidirectional methods consider also future frames (bidirectional estimation). 

In [35] a Hopfield neural algorithm is proposed to perform hierarchical motion 
estimation. It uses a classical best match method in order to reduce the number of 
possible macroblocks. Once obtained a subset of D candidates, a Hopfield net-
work is used to obtain the best vector of affinities v. The optimal affinity vector v 
is the one minimizing the functional: 
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In (1) f is the vector of the current block to be estimated, G is a matrix whose 
columns are the D candidate blocks, v is the affinity vector (i.e. the one selecting 
the best match block) and L2 denotes the size of the search windows. The architecture 
of the neural network performing the vector optimization is shown in figure 4. 
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Fig. 4. Hopfield neural network for motion estimation 

Other approaches to motion estimation include cellular neural networks 
(CNNs) [36]-[39][76]. These architectures can parallelize the computational flow 
required by both motion estimation and compensation, yielding faster and scalable 



 

computations. CNNs perform an optimization process based on their capacity to 
evolve toward a global minimum state. 

Figure 5 shows the cell architecture of the network described in [36]. Cells are 
located in a N M× array;  the generic cell Cij has a state xij, a constant external in-
put uij and an output yij and has r neighbor cells.  
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Fig. 5. Block diagram of cell Cij of the Cellular Neural Network proposed in [36] 

It is a  graphical representation of the following difference equation: 
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Where C and R conform the integration time constant of the system, I is a con-
stant scalar bias, A and B are (2 1) (2 1)r r+ × +  matrices; , ; ,i j k lA is the element k, l 
of the matrix A of the cell Cij.  

The dynamics of the CNN networks are described by a system of  nonlinear or-
dinary differential equation (2) and by an energy function minimized during the 
computation process.  

In [36] motion estimation is based on maximization of the a-posteriori prob-
ability (MAP) of the scene random field given the random motion field realiza-
tion. It is possible to find similarity between MAP and CNN energy function.  

For the scopes of this section it is enough to consider that MAP may be inter-
preted in terms of CNN architecture: feedforward input terms originates from ma-
trix B, recurrent terms from the feedback matrix A. More details about the algo-
rithm, stability and network design can be found in [36][37][40].   

The capability of distributed computation, based on the parallel structure of 
CNNs, is exploited also in other contexts. For example, in [38][39] CNNs perform 
fast and distributed operation on frame images. The following mathematical for-
mulation is used: 
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The cell architecture is similar to the one described in figure 5 adding nonlinear 
feedforward and nonlinear feedback blocks represented respectively  by ( ), ; ,

ˆ
i j k l klB y  



 

and ( ), ; ,
ˆ

i j k l klA y . Motion compensation aims at determining what objects inside 
frame In+k are present also in frame In. Considering frame n+k, object positions in 
previous frame n are estimated by moving each object of frame n in a p q× -pixel 
window and comparing the result with the frame In+k. 

Motion research is performed by following a “spiral” trajectory. All the proc-
essing is performed by the CNN, whose parameters (such as A, B, Â , B̂ , x, I, u, 
y) are preliminarily set to proper values in order to obtain the desired effect. 

3.4  Neuro fuzzy segmentation of human image sequences 

In order to achieve better compression ratios, modern video coding techniques 
apply different schemes to different objects in the same video stream (object-
based compression). The advantages of using different compressions techniques 
for different objects are strictly tied to the capability of identifying and extracting 
the objects from the background. Classical tools for the generation of region-based 
representations are discussed in [44], where the state of art of this class of ap-
proaches is also described. 

 In [41] spatial and temporal information are combined to perform a neuro-
fuzzy video segmentation of a videoconference video stream (one human speaker 
and background).  The approach consists of three main steps: 

− clustering 
− detection 
− refinement 

In the first step a fuzzy self-clustering algorithm is used to group into fuzzy 
clusters similar pixels in the base frame of the video stream. Each frame image is 
divided into 4x4 pixel blocks, that are grouped in segments by the clustering algo-
rithm. Segments are then combined together in order to form larger clusters. Each 
cluster is represented by Gaussian membership functions (one for the luminance 
and one for each chrominance), with a given mean value and variance.  

After fuzzy clustering is completed, the detection step starts. In this step human 
face and body (i.e. “human objects”) are detected and extracted from the back-
ground. Face segments are easily identified since they are characterized by 
chrominance values within a restricted range and luminance values having consis-
tent variations. Once the area containing the face has been identified, the rest of 
body is assumed to lay in the area below the face. 

On the basis of such analysis, clusters can be divided into foreground, back-
ground and ambiguous regions. A fuzzy neural network is employed to identify 
the ambiguous regions. The architecture of the network is shown in figure 6. Its 
operations are explained as follows. 

Each pixel of each cluster yields three inputs x1, x2, x3, that are the values of 
luminance and chrominances. The output of the network will be 1 if the cluster (or 
the pixel) is completely contained in the human object and 0 otherwise.  The net-
work layers are designed in the following way: 



 

− Layer 1. The input layer contains the three inputs, that are directly transmitted 
to the next layer. 

− Layer 2. The fuzzification layer contains N groups of three neurons each, being 
N the number of fuzzy clusters. The output is computed as a Gaussian function: 
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 where mij, and σij are proper learning parameters. 
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Parameters (mij, σij, ci) are trained from foreground and background blocks. The 
training algorithm is a combination of an SVD-based least squares estimator and 
gradient-based optimization (hybrid learning). 

Other approaches to fuzzy neural segmentation are based on fuzzy clustering of 
more complex data structures. Data include both intra-frame information such as 
colour, shape, texture and contour, and inter-frame information, such as motion 
and object temporal shape.   

In [42] good segmentation results are obtained by a two-step decomposition. The 
first step splits the image in subsets,  by use of an unsupervised neural network. The 
frame image is then divided into clusters. The hierarchical clustering phase reduces the 
complexity of the object structure. Finally a PCA-based processing performs the re-
finement step, providing the final foreground-background segmentation. 
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Fig. 6. Architecture of the fuzzy neural network for human object refinement 



 

Other approaches are based on a subspace representation of the video sequence 
[43]. In this case video sequences are described by the minimum set of maximally 
distant frames that are able to describe the video sequence (key frames), selected 
on the basis of their semantic content. These frames are collected in a codebook. 
The core of the coding system is the video key frames codebook (VKC) definition, 
which is based on video analysis in the vector space. This definition is performed 
by an unsupervised neural network, through a storyboarding of the recorded se-
quence. Image feature vectors are used to represent images into the vector space. 
Clustering of all images in the feature vector space is employed to select the 
smaller set of video key frames for VKC definition. 

4  Quad-tree segmentation and neural compression 

The following  sections describe in detail two waveform video compression al-
gorithms, based on the use of feedforward and locally recurrent neural networks. 

Techniques described so far were based on generalization of methods used for 
the compression of still images [75]. In particular, transform coding techniques 
achieve the desired compression by introducing proper transformations of images 
[51]. More specifically, given the set of coefficients representing a portion of an 
image or a video frame, transform coding produces a reduced set of coefficients 
such that reconstruction of the original image produces the minimum possible dis-
tortion. This reduction is possible since most of the initial block energy is concen-
trated in a reduced number of coefficients.  

The optimal transform coder, in the sense of the minimum mean square error, is 
the one minimizing the mean-square distortion of the reconstructed data for a 
fixed quantization. In particular, the well-known Karhunen-Loève transform ful-
fils this constraint. 

In the framework of video compression, techniques used for still images can be 
applied jointly with a temporal decomposition, thus calling for proper space-time 
processing. The following sections describe an effective video preprocessing tech-
nique and a feasible and particularly attractive solution to the design of neural  trans-
form coders. 

4.1  Video preprocessing 

Still images usually contain uniformly coloured areas, with poor informative 
content, and highly detailed areas. Different compression schemes can be 
adopted on areas with different activity levels, thus providing a better quality on 
detailed areas, and higher compression ratios on more uniform areas. 

Frame images are decomposed in blocks that are individually processed. In 
particular, higher activity blocks can be extracted on the basis of their orienta-
tion: horizontal, vertical, diagonal. Blocks are then divided into subclasses and 



 

coded with different coders, in order to improve the performance of the com-
pression [14]-[16].  

Several papers described this kind of approach. Very good performance were 
obtained in [15], where blocks were grouped according to nine possible orienta-
tions: two horizontal (one darker on the left, one darker on the right), two verti-
cal, four diagonal and the last shaded.  

Figure 7 shows a picture splitted in blocks of different size by means of a quad-
tree approach, based on a measure of the pixels variance: the bigger is the dimen-
sion of the block, the lower is the content detail, and viceversa.  

Blocks having the same mask size carry about the same information and are 
processed by the same neural network, requiring specific training sets. 

In video sequences, areas can be segmented also on the basis of changes in 
images, thus identifying sub-sequences where limited action takes place. Useful 
video representation can be obtained by identifying adjacent frames with re-
duced dissimilarities (group of frames, GOF). Each GOF collects frames having 
the same Depth of Activity (DA), by comparison of a pre-set threshold th with 
the variance between pixels of several adjacent frames. These frames have the 
same quad-tree segmentation  structure. 

The choice of the proper threshold is a critical issue in determining the DA. 
Higher values of the threshold yield lower quality of the reconstructed video, since 
frames are not represented by their own quad-tree structure. On the other hand, too 
low values of the threshold yield better quality but higher bit rate. 
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Fig. 7. a) Quad-tree segmentation; b) Adaptive size mask splitting block 

The GOF generation algorithm consists of the following steps (figure 8): 

1. the first frame (keyframe) is selected as a reference image of the i-th GOF; 
2. a subsequent frame n belongs to the i-th GOF if the variance of the image dif-

ference between frame n and the keyframe is below th. The number of frames 
for which this condition is verified gives the DA, i.e. the length of the identified 
sub-sequence; 

3. the final extracted sub-sequence consists of the keyframe I and the frames ob-
tained by subtracting each subsequent frame to the keyframe (D-frames). 

Images contained in every GOF are coded by a set of properly trained neu-
ral networks. The keyframe I and the last frame of the GOF D1 will be coded 



 

with a fitted quad-tree structure, as shown in figure 9. For each sub-block of 
the keyframe I and of the frame D1 in addition to the compressed data it is 
necessary to code also the quad tree segmentation, the network used for cod-
ing the sub-block, the sub-block mean value, the quantization and finally the 
number of frames internal to the GOF.  

Sub blocks of D2 (the residual frames of the GOF) only require information 
about the compressed data, since they have the same segmentation of D1. 
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Fig. 8. Group of frames generation 

 

I D2 D1

. . .

Fig. 9. Quad-tree schemes applied to frames within the GOF 

The advantage of using the D2 frames lies in the fact that frames near to D1 have 
the same quad-tree segmentation structure (figure 9). In addition, these images are 
mostly made of uniform areas, so that the mask applied will be principally constituted 



 

by large blocks (e.g. 16 16× ), thus reducing the bit-rate. Figure 10 presents an overall 
scheme of the proposed approach. 

The video preprocessor, given the original video stream, establishes the value 
of the DA. The GOF preprocessor computes the differences between frames, while 
the controller selects the keyframe and frames D1 and D2, to be segmented in dif-
ferent ways.  

 
Fig. 10. Scheme of the proposed neural quad-tree video coding 

4.2  Feed-forward neural compressor 

Once segmentation has been performed, the next step is compression of each 
image block. In the transform coding framework, the Karhunen-Loève transform 
is commonly exploited to represent signals on the basis of their principal com-
ponents.  

In particular, it is possible to use a reduced set of principal components (re-
duced rank approximation),  then obtaining a reconstruction error which de-
pends on the variance of the eigenvalues of discarded eigenvectors. In more de-
tail, given an N-dimensional vector signal x, the Karhunen-Loève transform 
represents it by using a basis W formed by the eigenvectors of its autocovari-
ance matrix: 

=y Wx  (4) 

In this case no compression is performed [21]. A reduced rank (i.e. com-
pressed) approximation of y is obtained by using the M eigenvectors correspond-
ing to the M larger eigenvalues:  

1

ˆˆ =
M N

i
i

w x
<

=

= ∑y Wx  (5) 

The representation error is bounded by the sum of the squared eigenvalues 
corresponding to the discarded eigenvectors [1]. It can be shown that the output 
vector coefficients are uncorrelated and therefore the redundancy due to correla-
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tion between neighbouring pixels is removed. Unfortunately application of KLT 
to video compression is not fully effective since it exploits second order statis-
tics only.  

The calculation of the estimate of the covariance of an image may be unwieldy 
and may require a large amount of memory; moreover the eigendecomposition 
implies a high additional computational cost due to the often large image size. 
These issues are important since KLT basis must be updated continuously during 
the video sequence.  

A possible alternative to KLT is the discrete cosine transform (performed via 
FFT), which yields performance similar to KLT [51][45]. 

Another possible alternative to avoid these problems is the use of iterative neu-
ral techniques. Neural approaches require a reduced storage overhead giving a 
faster and computationally more convenient solution to the compression problem. 
Moreover neural networks are able to adapt over long term variations in the 
frame image statistics [3]. In the following, linear and nonlinear PCA are de-
scribed. 

Linear PCA: Hebbian learning 

Linear PCA is an efficient solution to eigendecomposition computation. In [2] a 
mechanism inspired to neurobiology was proposed, where synaptic connections 
between neurons are modified by learning. Hebb’s assumption consists in rein-
forcing the synaptic connection between two neurons if they are both active at the 
same time. Figure 11 shows the architecture of the artificial neuron used to per-
form the principal component extraction by Hebbian learning . 
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Fig. 11. Hebbian Neuron 

The neuron’s output is: 

y = ax  (6) 

The Hebbian learning rule is given by the following recursive equation: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

1
n n n

n
n n n

µ
µ

+
+ =

+

a a x
a

a a x
 (7) 



 

where µ is the learning rate and ⋅  is the Euclidean norm. Eq.(7) has been shown 
to converge to the first principal component.  

Hebbian learning can be generalized to find the first M principal components. 
More specifically, the second principal component can be obtained by removing 
the first principal component from original data and performing PCA on updated 
data, and so on. The generalized Hebbian Algorithm includes also orthogonali-
zation: 

[ ] [ ] [ ]1 T Tn n LT nµ   + = + −   A A yx yy A  (8) 

In (8) LT (i.e. lower triangular) is the matrix operator that sets to zero all the  
elements above the matrix diagonal.  After convergence, matrix A contains the 
first M principal directions. An alternative is the APEX (Adaptive Principal 
Component Extraction) network, where hebbian synapses are used together with 
anti-hebbian ones. 
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Fig. 12. Linear network for principal component extraction 
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Fig. 13.  The APEX network 

Also this architecture has a biological justification. The m-th principal com-
ponent can be computed on the basis of the previous m-1. More details can be 
found in [74].  



 

Nonlinear PCA: Multilayer Perceptron 

In 1988, Cottrel, Murno and Zipper applied a two-layer perceptron to the 
PCA problem [5]. The net was trained with the so called autoassociative 
backpropagation. This work opened the way to a large number of future de-
velopments. 

Figure 14 shows the proposed architecture. In a first formulation a linear neu-
ron was used. Its output is: 

ˆ T
i iy = a x  (9) 

In matrix formulation: 

 
ˆ
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 (10) 

Linear neural networks can achieve the same compression ratio as KLT without 
necessarily obtain the same weight matrices of the PCA transform: according to 
(10) given the optimum PCA solution A=W, different optimal solutions can be 
obtained by A=WQT, being Q an orthogonal matrix. 
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Fig. 14. Multilayer perceptron trained by autoassociative backpropagation 

Other approaches developed neural networks with sigmoidal activation func-
tions, yielding better results with  respect to the linear network [3][4].  

A critical issue in neural PCA is the fixed compression ratio of each processed 
block: the network performs the compression with a low distortion on uniform 
blocks but produces higher distortion on less uniform ones.  

In order to overcome this problem, size-adaptive networks [6] can be employed 
to perform compression depending on block activity. This allows for higher com-
pression of blocks with low activity level and good reconstruction of blocks with 
higher activity level. 



 

As already described, the quad-tree algorithm segments images into several 
blocks of different size, on the basis of the activity level. An example of segmen-
tation is shown in figure 15, where blocks of size 4x4, 8x8 and 16x16 are used. 
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Fig. 15. Adaptive size mask compression of visual information 

Three neural architectures were developed. They all have eight hidden neurons, 
while the number of inputs is equal to the number of pixels in a block. The output 
of each neuron is quantized with 4 bits. 

Learning capabilities were improved by use of adaptable sigmoidal functions.  
In alternative, spline adaptive models were fruitfully employed [8].  

Performance in video compression are usually evaluated on the basis of the 
Peak Signal to Noise Ratio (PSNR), defined as:  
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where orgpix (m,n) is the pixel of the current frame, and comppix (m,n) is the 
compressed one and M and N are the frame dimension. 

Figure 16 shows the PSNR values obtained on the Missa.avi benchmark file, by 
processing GOFs with different thresholds.  
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Fig. 16. a) Missa.avi movie segmented and compressed; b-c) PSNR and GOF evolution 

with two different thresholds 

Table 1 shows different PSNR and bit rate values for different thresholds, for 
the Missa and Susi benchmark movies. It is easy to see that higher thresholds pro-
duce a gain in compression but decrease the quality of video reconstruction. 

Table 1. Peak Signal to Noise Ratios (PSNR) and bit rate (br) for different thresholds in 
Missa and Susi videos 

th = 8 th = 15 th = 30 

 
PSNR 
(dB) 

br 
(kbps) 

PSNR 
(dB) 

br 
(kbps) 

PSNR 
(dB) 

br 
(kbps) 

Missa 34,62 205,63 34,02 166,05 33,02 152,85 

Susi 31,11 469,53 30,91 422,31 30,38 361,52 

Hierarchical neural networks 

As described, multilayer neural nets offer an attractive solution to video com-
pression. Their success is due to several advantages, like short time encoding-
decoding and no explicit use of codebooks. Nevertheless only information carried 
by contiguous pixels within the same segmented block is exploited. Better per-
formance can be obtained by considering information on contiguous blocks. 
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Fig. 17. Multilayer neural network for high order data compression-decompression 

Hierarchical neural networks (HNNs) take into account the information about 
block contiguity [7]. The idea is to divide a scene into N disjoint sub-scenes, each 
one segmented in n n× pixels blocks. Blocks are processed together by the hierar-
chical structure shown in figure 17.  

The HNN consists of input, hidden and output layers and it is not fully con-
nected. The input and the output layers are single layers, composed by N input 
blocks (one for each section of the image), where each block has n2 neurons. The 
hidden-layer section consists instead of three layers: combiner, compressor and 
decombiner layer. The connections between the input and combiner layers and be-
tween the decombiner and the output layers are not full. 

Although learning in HNN could be performed by the classical back propaga-
tion algorithm, the so called nested training algorithm (NTA) provides better per-
formances. NTA is a three phase training, one for each part of the architecture: 

− OLNN (outer loop neural network). It performs the training of each fully con-
nected network obtained by the corresponding sub blocks of input, combiner 
and output layer. Standard back propagation is applied. The target output is 
equal to the input. The training set is given by segmented  blocks. 

− ILNN (inner loop neural network). It performs the training of the hidden fully 
connected layers: combiner, compressor and decombiner. 

− Once the OLNN and the ILNN have been separately trained, their weights are 
used to construct the overall network. 



 

It is important to note that this hierarchical structure performs inter-block 
decorrelation in order to achieve a better compression level. About the same per-
formance in terms of image quality and compression level were reached by use of 
adaptive spline activation functions, yielding a simpler structure.     

4.3  Recurrent neural compressor 

Multilayer neural networks can be properly adapted by introducing topological 
recurrency, in order to take into account the temporal dependence of video se-
quences. This allows either to improve the quality of the reconstructed video, for a 
fixed bit-rate, or to further reduce the compression level [78]. 

Dynamic behavior in multilayer perceptrons can be obtained by two different 
approaches: 

− Local approach: a dynamical (e.g. ARMA) model of the neuron is employed. 
− Non local Approach: external feedback is introduced.  

In both cases the dynamical model is such that the input at time n: [ ]x n  may in-
fluence the output at time n-h: [ ]y n h− . In the case of asymptotic stability, the de-
rivative [ ] / [ ]y n h x n∂ − ∂  goes to zero when h goes to infinity. The value of h for 
which the derivative becomes negligible is called temporal depth, whereas the number 
of adaptable parameters divided by the temporal depth is named temporal resolution.  

An example of architecture used in this context is the IIR-MLP proposed in 
[10][11], where static synapses are replaced by conventional IIR adaptive filters, 
as depicted in figure 18. 
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Fig. 18. Locally recurrent neuron for multilayer neural networks 

Several learning algorithms for recurrent architectures exist in literature, al-
though a comprehensive framework is still missing. In [9] a very effective algo-
rithm was introduced for learning of locally recurrent neural networks. Learning is 
performed by a new gradient-based on-line algorithm [9], called causal recursive 
back-propagation (CRBP). It yields some advantages with respect to known on-
line training methods and the well known recursive back propagation. CRBP in-
cludes backpropagation as a particular case [12][13]. This approach is based on 
the introduction of an ARMA model of synapses (figure 19). The forward phase at 



 

time n is described by the following equations, evaluated for layers 1,...,l M=  
and neurons 1,.., lm N= : 

( ) ( )1
( ) ( ) ( 1) ( ) ( )

( ) ( )
0 1

[ ] [ ] [ ]
l l

km kmL I
l l l l l

km km p m km p km
p p

y n w x n p v y n p
−

−

= =

= − + −∑ ∑  (12) 

[ ]
1

( ) ( )

0
[ ]

lN
l l

k km
m

x n sgm y n
−

=

 
=  

 
∑  (13) 

where sgm(.) is the sigmoidal function.  
If [ ]( )l nΦ  is the set of weights of layer l at time n, the updating rule is: 
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and ( )( ) 1i
n mL −  is the order of the moving average part of the synapse of the n-th 

neuron of the l-th layer, relative to the m-th output of the (l-1)-th layer. 
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Fig. 19. Locally recurrent ARMA model for multilayer perceptrons 

Referring to symbols in figure 19, the CRBP learning rules are: 
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The CRBP algorithm is computationally simple and can be fruitfully applied to 
the video compression problem. In particular, the proposed architecture was ap-
plied as neural coder in the coding block of figure 10. 

Learning of locally recurrent neural networks for video compression is a critical 
issue since recurrent networks are typically sensitive to factors like choice of the 
proper training set, video length, or order by which the examples are presented. 
An inappropriate choice of these factors might compromise the correct learning of 
the network, typically producing artifacts in the reconstructed video. Most com-
mon artifacts are the so called  “regularities” and “memory effect”. An example of 
“regularities” is shown in figure 20. They can be avoided by reducing the length 
of the video training set. 

 

    
Fig. 20. Regularity effects in two frames of a video sequence 

The “memory effect” is due to the delay lines in the synapse. It is typically de-
tected by the presence in the reconstructed video of objects that are no longer pre-
sent in the scene, especially on uniform color backgrounds (figure 21).  This arti-
fact can be avoided by carefully dimensioning the neuron dynamics and the 
number of taps of the ARMA filter.    

 
a) 
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Fig. 21. Memory effect in two frames of a video sequence 

Regularities and memory effects can be actually reduced if locally recurrent 
neurons only in the second layer of the structure of figure 14 are used. 



 

It has been observed that most of artifacts are actually in the “background” of 
the scene. As a matter of fact, recurrent neural networks perform quite well on dy-
namical parts while they are not always effective on static background sections. 

In order to overcome this limitation, an hybrid approach could be used after the 
scene segmentation. The idea is to use static neural networks on more static sub-
scenes (the ones with the lowest activity), and to employ recurrent neural net-
works to code blocks with higher levels of detail. This solution requires a different 
processing for lower and higher activity blocks, in terms of network size, architec-
ture and learning. Table 2 shows the performance typically obtained by a hybrid 
approach, where IIR synapses are used. 

Table 2. Average  bit rate and peak signal to noise ratio obtained with three different neural 
architectures 

Reconstructed video 

No. of hidden neurons 

Susi_02 

6  

Susi_03 

5  

Susi_04 

4  

br (kbs) 433,38 372,51 319,32 

PSNR (dB) 28,92 28,45 28,01 

 
 

 

   

 

 
 

Fig. 22. Frames of the Suzi video compressed and recovered. Left: Suzi_02 (no block ef-
fect), right: Suzi_04 (block effect). 

The improvement obtained by use of recurrent neural networks is not com-
pletely clear from a straight comparison between table 1 and 2, but it could be eas-
ily verified when watching at the reconstructed video sequence, where smoother 
and more natural motions and transitions among frames are actually performed.  
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